2x^2+(x-8)(x+8)-3(1-x^2)=0

Simple and best practice solution for 2x^2+(x-8)(x+8)-3(1-x^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+(x-8)(x+8)-3(1-x^2)=0 equation:



2x^2+(x-8)(x+8)-3(1-x^2)=0
We use the square of the difference formula
2x^2-3(1-x^2)+x^2-64=0
We multiply parentheses
2x^2+3x^2+x^2-3-64=0
We add all the numbers together, and all the variables
6x^2-67=0
a = 6; b = 0; c = -67;
Δ = b2-4ac
Δ = 02-4·6·(-67)
Δ = 1608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1608}=\sqrt{4*402}=\sqrt{4}*\sqrt{402}=2\sqrt{402}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{402}}{2*6}=\frac{0-2\sqrt{402}}{12} =-\frac{2\sqrt{402}}{12} =-\frac{\sqrt{402}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{402}}{2*6}=\frac{0+2\sqrt{402}}{12} =\frac{2\sqrt{402}}{12} =\frac{\sqrt{402}}{6} $

See similar equations:

| 16=s+12 | | 3w+5(w+2)=26 | | -14k-5k+10k=-3 | | -6+8k=10k | | 6x^2=-11 | | 26-2v=-4(3v+1) | | 9=2f+2f+1 | | v4+9=13 | | 0.2x+12=15 | | v4+ 9=13 | | 2x-7(5x+21)=51 | | 9(x-2)+1=10 | | 2(3.14)(.5)(7)=x | | 22+5k=-(k-4)-6 | | 3c+76=7c | | 14k-5k+10k=-3 | | 1/2(2+6)=3x+3 | | x=x.9235+55+27.84+562.50 | | -10−2g=-g | | 3c+7=7c+7 | | 6t+14=7t | | 2(x-12)=2x-24 | | -n+16=-6(4-6n)+3n | | -4(-x+7)=-8 | | 2c+97=7c-13 | | 19=4q-17 | | 3(g-9)=3g+11 | | -14k—5k+10k=-3 | | 8(a-3)+7a=4(a-2)+6 | | -5p+6=4(1-3p)-5 | | 4=4s+s-11 | | 3(w-7)+11=4w-1 |

Equations solver categories